首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   99篇
  国内免费   12篇
化学   1116篇
晶体学   11篇
力学   31篇
数学   154篇
物理学   283篇
  2023年   4篇
  2022年   12篇
  2021年   51篇
  2020年   32篇
  2019年   31篇
  2018年   24篇
  2017年   31篇
  2016年   59篇
  2015年   55篇
  2014年   90篇
  2013年   112篇
  2012年   146篇
  2011年   128篇
  2010年   95篇
  2009年   80篇
  2008年   91篇
  2007年   90篇
  2006年   79篇
  2005年   69篇
  2004年   59篇
  2003年   49篇
  2002年   41篇
  2001年   32篇
  2000年   25篇
  1999年   16篇
  1998年   13篇
  1997年   9篇
  1996年   12篇
  1995年   8篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有1595条查询结果,搜索用时 328 毫秒
71.
African swine fever virus (ASFV) causes a highly contagious and severe hemorrhagic viral disease with high mortality in domestic pigs of all ages. Although the virus is harmless to humans, the ongoing ASFV epidemic could have severe economic consequences for global food security. Recent studies have found a few antiviral agents that can inhibit ASFV infections. However, currently, there are no vaccines or antiviral drugs. Hence, there is an urgent need to identify new drugs to treat ASFV. Based on the structural information data on the targets of ASFV, we used molecular docking and machine learning models to identify novel antiviral agents. We confirmed that compounds with high affinity present in the region of interest belonged to subsets in the chemical space using principal component analysis and k-means clustering in molecular docking studies of FDA-approved drugs. These methods predicted pentagastrin as a potential antiviral drug against ASFVs. Finally, it was also observed that the compound had an inhibitory effect on AsfvPolX activity. Results from the present study suggest that molecular docking and machine learning models can play an important role in identifying potential antiviral drugs against ASFVs.  相似文献   
72.
The reaction pathways of 1-propanethiol, 1-propanol, and propylamine molecules, containing a propyl moiety, on a Ge(100) surface were investigated using high-resolution photoemission spectroscopy (HRPES) experiments and density functional theory (DFT) calculations. Upon analysis of the HRPES data, the adsorption of 1-propanethiol and 1-propanol was found to occur through a dissociation reaction, whereas that of propylamine took place via N dative bonding at room temperature. On the basis of our DFT results, adsorption geometries and transition states for each of these molecules on the Ge(100) surface were confirmed. Systematic studies of S-, O-, and N-containing molecules, composed of an identical propyl moiety, on the Ge(100) surface provide insight into the adsorption mechanism of aliphatic molecules containing alkyl chains on the Ge(100) surface.  相似文献   
73.
Adsorption of dimethyl disulfide (DMDS) on gold colloidal nanoparticle surfaces has been examined to check its binding mechanism. Differently from previous results, DMDS molecules adsorbed on the gold surface at high concentration showed the S–S stretching band at 500 cm−1 in surface-enhanced Raman scattering (SERS) spectra, which indicates the presence of intact adsorption of DMDS molecules. However, it was found that the S–S bond of disulfides was easily cleaved on the gold surface at low concentration. These behaviors were not observed for diethyl disulfide (DEDS) or diphenyl disulfide (DPDS). Our results indicate that DMDS molecules with the shortest alkyl chains on the gold surface can be inserted into self-assembled monolayers (SAMs) without the S–S bond cleavage during self-assembly due to insufficient lateral van der Waals interaction and the low adsorption activity of disulfides, whereas DEDS with longer alkyl chains or DPDS with the weak disulfide bond dissociation energy would not. These unusual DMDS adsorption behaviors were examined by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). We also compared the bonding dissociation energy of the S–S bonds of various disulfides by means of a density functional theory (DFT) calculation.  相似文献   
74.
We demonstrate subcentimeter depth profiling at a stand off distance of 330 m using a time-of-flight approach based on time-correlated single-photon counting. For the first time to our knowledge, the photon-counting time-of-flight technique was demonstrated at a wavelength of 1550 nm using a superconducting nanowire single-photon detector. The performance achieved suggests that a system using superconducting detectors has the potential for low-light-level and eye-safe operation. The system's instrumental response was 70 ps full width at half-maximum, which meant that 1 cm surface-to-surface resolution could be achieved by locating the centroids of each return signal. A depth resolution of 4 mm was achieved by employing an optimized signal-processing algorithm based on a reversible jump Markov chain Monte Carlo method.  相似文献   
75.
Tosa V  Nam CH 《Optics letters》2007,32(18):2707-8; discussion 2709-10
We argue for a different physical interpretation of the results given in the recent Letter by Painter et al. [Opt. Lett.31, 3471 (2006)] in which an elongated Ti:saphire beam with two distinct waists is considered as direct evidence of laser filamentation. As the pulse power is well below the critical power for self-focusing, the authors pleaded for new examination of the n(2) value for He. A three-dimensional numerical modeling, using the published n(2) value for He, reproduces very well the measured data and invalidates the filamentation hypothesis.  相似文献   
76.
过氧化氢既可用作环境友好的绿色氧化剂,也可用作燃料电池中的太阳能燃料,因而受到越来越多的关注.本文综述了太阳能驱动分子氧氧化水制备过氧化氢及其作为绿色氧化剂和燃料的研究进展.利用太阳能将水的e-和4e-氧化与分子氧的e-还原相结合,使光催化生产过氧化氢成为可能;本文讨论了与e-和4e-水氧化选择性及e-和4e-氧还原选择性相关的催化反应控制.由于光催化e-氧化水和e-还原分子氧的过程都产生过氧化氢,因此该组合的催化效率较高.太阳能光驱动水氧化及分子氧还原生产过氧化氢与过氧化氢催化氧化底物相结合,在该过程中分子氧用作最环保的氧化剂.  相似文献   
77.
Research on Chemical Intermediates - N-Heterocyclic carbene (NHC)-linked PEPPSI-type palladium complexes have recently been used in the direct C-H bond arylation of heteroarenes. However, in most...  相似文献   
78.
79.
A series of meso‐ester‐substituted BODIPY derivatives 1–6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core ( 3 – 6 ) become partially soluble in water, and their absorptions and emissions are located in the far‐red or near‐infrared region. Three synthetic approaches are attempted to access the meso‐carboxylic acid (COOH)‐substituted BODIPYs 7 and 8 from the meso‐ester‐substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso‐COOH‐substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time‐dependent density functional theory calculations are conducted to understand the structure–optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso‐ester‐substituted BODIPYs ( 1 and 3 – 6 ) and one of the meso‐COOH‐substituted BODIPYs ( 8 ) are very membrane‐permeable. These features make these meso‐ester‐ and meso‐COOH‐substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells.  相似文献   
80.
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever‐increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh‐based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L ‐glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号